
THE CONFORMATION OF 1.3.5-TRIMETHYL-2-ISOPROPYL-BENZENE AND OF SIMILAR COMPOUNDS CONTAINING sp²-sp³ BONDS Albrecht Mannschreck and Ludger Ernst

Institut für Organische Chemie, Universität Heidelberg

(Received in UK 21 October 1968; accepted for publication 28 October 1968)

Hassner and Nash ¹⁾ have mentioned that the ¹H-NMR spectrum of 1.3.5-trimethyl-2-(&-chlorobenzyl)-benzene ($\underline{1}$) at low temperature shows restricted rotation of the mesityl group. We have measured the free enthalpy of activation for this process by coalescence of the 1- and 5-methyl signals ($\tau = 7.53$ and 8.13, -55° , d_6 -acetone) and found $\Delta G_c^{\ddagger} = 11.3\pm0.3$ kcal mole⁻¹ (-45°, d_6 -acetone) and 11.4 ± 0.3 kcal mole⁻¹ (-43.5°, CS_2) ²⁾. This spectral change does not seem to be due to the breaking of the C-Cl bond, as we obtained nearly the same barrier for $\frac{2}{2}$ (11.2 ±0.3 kcal mole⁻¹, -44.5°, CS_2). Very recently, we learned about results for similar derivatives of fluorene ³⁾ and for benzhydryl-mesitylene ⁴⁾.

As to the conformations involved, more experimental evidence is available for the title compound $\underline{3}$. In d₆-acetone it shows 1- and 5-methyl singlets at $\tau = 7.68$ and 7.77 (-60°) and $\Delta G_c^{\pm} = 12.8\pm0.2$ kcal mole⁻¹ (-35°). The methyl doublet (J = 7 cps) of the isopropyl group is not broadened at -60° in d₆acetone ($\tau = 8.75$) or in CS₂ ($\tau = 8.77$) as solvents. These findings are compatible only with $\frac{3}{2}$ or with rapidly interconverting species $\frac{3}{24}$ and $\frac{3}{2b}$ as ground state conformations. The downfield shift of the methine septet ($\tau = 6.71, +36^{\circ}, CS_2$), compared with that of isopropyl-benzene ($\tau = 7.05$), leads us to prefer conformation $\frac{3}{2}$ to the $\frac{3}{24}/\frac{3}{2b}$ equilibrium. The transition state of this C-aryl rotation is probably $\frac{3}{2c}$, not $\frac{3}{24}$. — The barrier is increased to 14.4 ± 0.3 kcal mole⁻¹ (-1.5°, d₆-acetone) in 1.3.5-trimethyl-2-cyclohexylbenzene ($\frac{4}{2}$).

Anilinium ion $\frac{5}{2}$ was studied by recording the spectra of the corresponding aniline in CF₃COOH (0.3 mole 1⁻¹) and proved to be stereochemically similar to its carbon analogue $\frac{3}{2}$. Thus, at -5° the N-methyl doublet ($\tau = 6.39$, J =5.5 cps) and the C-methyl singlets ($\tau = 7.27$ and 7.40) were not broadened. At $+70^{\circ}$ the latter had coalesced to one sharp signal ($\tau = 7.36$), whereas the N-methyl doublet was completely unaltered. We conclude that the exchange of the N-H proton in $\frac{5}{2}$ is slow 5 at this temperature and that the coalescence of the C-methyl singlets is due to N-aryl rotation 6 . The ΔG^{\pm}_{c} -value is considerably higher for $\frac{5}{2}$ (15.9±0.3 kcal mole⁻¹, +26°, CF₃COOH) than for hydrocarbon $\frac{3}{2}$ (12.8 kcal mole⁻¹), thus reflecting the shorter N-aryl bond in anilinium ions compared with the longer C-aryl bond in toluenes.

Work is in progress to alter the substituents in $\frac{3}{2}$, especially with regard to the equilibrium constants between rotamers ⁶⁾. — We gratefully acknow-ledge experimental assistance by Miss J.Linß and Mrs.G.Rissmann.

- 1) A.Hassner and E.G.Nash, Tetrahedron Letters 1965, 525.
- 2) At 60 Mcps. ΔG_c^{\ddagger} -values were calculated assuming a twofold barrier.
- 3) E.A.Chandross and C.F.Sheley, Jr., <u>J.Am.Chem.Soc</u>. <u>90</u>, 4345 (1968); T.H. Siddall, III and W.E.Stewart, <u>Tetrahedron Letters</u> <u>1968</u>, 5011 and personal communication.
- 4) H.Kessler, A.Mcosmayer and A.Rieker, personal communication.
- 5) Slow exchange of the NH proton of 5 in CF₃COOH is in accord with the investigation of similar ions by W.F.Reynolds and T.Schaefer, <u>Can.J.Chem</u>. 42, 2641 (1964), if the low acidity of 5 is taken into account: H.C.Brown and A.Cahn, <u>J.Am.Chem.Soc</u>. 72, 2939 (1950).
- 6) Cf. A.Mannschreck and H.Münsch, Tetrahedron Letters 1968, 3227.